11 | 10 | 2024

Уравнения движения твердого тела

Поскольку твердое тело обладает в общем случае шестью степенями свободы, то общая система уравнений движения должна содержать шесть независимых уравнений. Их можно представить в виде, определяющем производные по времени от двух векторов: импульса и момента тела.

Первое из этих уравнений получается просто путем суммирования уравнений =f для каждой из составляющих тело частиц, где p — импульс частицы, а f — действующая на нее сила. Вводя полный импульс тела

P = p = μV

и полную действующую на него силу f=F, получим

= F.                                                             (34.1)

Хотя мы определили F как сумму всех сил f, действующих на каждую их частиц, в том числе со стороны других частиц тела, фактически в F входят лишь силы, действующие со стороны внешних источников. Все силы взаимодействия между частицами самого тела взаимно сокращаются; действительно, при отсутствии внешних сил импульс тела, как и всякой замкнутой системы, должен сохраняться, т.е. должно быть F=0.

Если U — потенциальная энергия твердого тела во внешнем поле, то сила F может быть определена путем дифференцирования ее по координатам центра инерции тела:

F = − .                                                                      (34.2)

Действительно, при поступательном перемещении тела на δR настолько же меняются и радиус-векторы  каждой точки тела, а потому изменение потенциальной энергии

δU =   δ = δR   = −δR  f = −FδR .

Отметим в этой связи, что уравнение (34.1) может быть получено и как уравнение Лагранжа по отношению к координатам центра инерции

  =

с функцией Лагранжа (32.4), для которой

= μV = P,   = − = F.

Перейдем к выводу второго уравнения движения, определяющего производную по времени от момента импульса M. Для упрощения вывода удобно выбрать «неподвижную» (инерциальную) систему отсчета таким образом, чтобы в данный момент времени центр инерции тела покоился относительно нее.

Имеем

= [rp] = [p] + [r].

В силу сделанного нами выбора системы отсчета (в котором V=0) значение  в данный момент времени совпадает со скоростью v=. Поскольку же векторы v и p = mv имеют одинаковое направление, то [p]=0. Заменив также  на силу f, получим окончательно:

= K,                                                         (34.3)

где

K = [rf].                                                      (34.4)

Поскольку момент М определен относительно центра инерции (см. здесь), он не меняется при переходе от одной инерциальной системы отсчета к другой. Это видно из формулы (9.5) с R=0. Отсюда следует, что зфавнение движения (34.3), полученное здесь при определенном выборе системы отсчета, тем самым, в силу галилеевского принципа относительности, справедливо в любой инерциальной системе.

Вектор [rf] называется моментом силы f, так что K есть сумма моментов всех сил, действующих на тело. Как и в полной силе F, в сумме (34.4) фактически должны учитываться лишь внешние силы; в соответствии с законом сохранения момента импульса сумма моментов всех сил, действующих внутри замкнутой системы, должна обращаться в нуль.