Страница 3 из 4
Общее же решение дается суммой всех s частных решений. Переходя к вещественной части, напишем его в виде
xk = ReΔkCeiωt ≡ ΔkΘ, (23.9)
где мы ввели обозначение
Θ = Re {Ceiωt }. (23.10)
Таким образом, изменение каждой из координат системы со временем представляет собой наложение s простых периодических колебаний Θ1, Θ2, ..., Θs с произвольными амплитудами и фазами, но имеющих вполне определенные частоты.
Естественно возникает вопрос, нельзя ли выбрать обобщенные координаты таким образом, чтобы каждая из них совершала только одно простое колебание? Тамая форма общего интеграла (23.9) указывает путь к решению этой задачи.
В самом деле, рассматривая s соотношений (23.9) как систему уравнений с s неизвестными величинами Θ, мы можем, разрешив эту систему, выразить величины Θ1, Θ2, ..., Θs через координаты x1, x2, ..., xs. Следовательно, величины Θ можно рассматривать как новые обобщенные координаты. Эти координаты называют нормальными (или главными), а совершаемые ими простые периодические колебания — нормальными колебаниями системы.
Нормальные координаты Θ удовлетворяют, как это явствует из их определения, уравнениям
+ Θ = 0. (23.11)
Это значит, что в нормальных координатах уравнения движения распадаются на в независимых друг от друга уравнений. Ускорение каждой нормальной координаты зависит только от значения этой координаты, и для полного определения ее временной зависимости надо знать начальные значения только ее же самой и соответствующей ей скорости. Другими словами, нормальные колебания системы полностью независимы.
Из сказанного очевидно, что функция Лагранжа, выраженная через нормальные координаты, распадается на сумму выражений, каждое из которых соответствует одномерному колебанию с одной из частот сиа, т.е. имеет вид
L = ( − Θ), (23.12)
где m — положительные постоянные. С математической точки зрения это означает, что преобразованием (23.9) обе квадратичные формы — кинетическая энергия (23.3) и потенциальная (23.2) — одновременно приводятся к диагональному виду.
Обычно нормальные координаты выбирают таким образом, чтобы коэффициенты при квадратах скоростей в функции Лагранжа были равны 1/2. Для этого достаточно определить нормальные координаты (обозначим их теперь через Q)равенствами
Q = Θ. (23.13)
Тогда
L = ( − ).
Все изложенное мало меняется в случае, когда среди корней характеристического уравнения имеются кратные корни. Общий вид (23.9), (23.10) интеграла уравнений движений остается таким же (с тем же числом s членов) с той лишь разницей, что соответствующие кратным частотам коэффициенты Δk уже не являются минорами определителя, которые, как известно, обращаются в этом случае в нуль.