|
|
Уравнения Максвелла—основные уравнения электродинамики — были впервые сформулированы Дж. Максвеллом в 1860-х годах.
Из выражений
H = rot A, Е = − − grad φ
легко получить уравнения, содержащие только E и H. Для этого определим rotE:
rot Е = − rot A − rot grad φ.
Подробнее: Первая пара уравнений Максвелла
Вместо того чтобы рассматривать заряды как точечные, в целях математического удобства часто рассматривают заряд как распределенный в пространстве непрерывным образом. Тогда можно ввести плотность заряда ρ так, что ρdV есть заряд, находящийся в объеме dV; ρ есть, вообще говоря, функция от координат и времени. Интеграл от ρ по некоторому объему есть заряд, находящийся в этом объеме.
Подробнее: Четырехмерный вектор тока
При нахождении уравнений поля из принципа наименьшего действия мы должны считать заданным движение зарядов и должны варьировать только потенциалы поля (играющие здесь роль «координат» системы); при нахождении уравнений движения мы, наоборот, считали поле заданным и варьировали траекторию частицы.
Подробнее: Вторая пара уравнений Максвелла
В предыдущем параграфе мы вывели выражение для энергии электромагнитного поля. Выведем это выражение, вместе с выражением для импульса поля, в четырехмерной форме. При этом мы будем для простоты рассматривать пока электромагнитное поле без зарядов. Имея в виду дальнейшее применение (к гравитационным полям), а также упрощение выкладок, мы проделаем вывод в общем виде, не конкретизируя род системы.
Подробнее: Тензор энергии-импульса
Поскольку след тензора энергии-импульса электромагнитного поля равен нулю, то сумма Tii для любой системы взаимодействующих частиц сводится к следу тензора энергии-импульса одних лишь частиц. Воспользовавшись выражением (33.5), имеем:
Tii = T(ч)ii = μcuiui = μc = μc2 .
Подробнее: Теорема вириала
|
|
|